If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2-4y=1
We move all terms to the left:
4y^2-4y-(1)=0
a = 4; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·4·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*4}=\frac{4-4\sqrt{2}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*4}=\frac{4+4\sqrt{2}}{8} $
| 100+2x=175-x | | 1-0.6x=0.4 | | d/3-(0.84)=2.84 | | 4p=15.12 | | -15x+11 =11 | | -15x+11 = 11 | | 4v−–10=14 | | 5x-63=57-3x | | r+1.4=5.58 | | -10+16+2x-2=2(-4x+7) | | 5(a-7)=27 | | 3(x-4)-2(x-5)=2(x-5) | | p/3-(-10)=18 | | -5x-23=42 | | 1/3x-5=1/2x-x+4 | | 975.17=1/3(3.14)r^2(15) | | 11.49=3c | | (2x+15)+(5x+3)=180 | | -105+6x=2x+31 | | 6=+51-2n | | 3-9c=-33 | | 3(x+7)=15 | | 6y+2–2y=2y–8 | | 6(u-3)-8u=-22 | | 8x=−20−(−12x) | | -2/3x+13+x=2/5 | | 5(x+1)=-3 | | 5(2+x)=x-2 | | 3.9=j-4 | | 9b=288 | | 2(3x-4)=6x-7 | | 345=9b+12 |